<u>Chapter - 15</u> Probability Notes : P(F) = No. of favourable outcomes Total no. of Possible outcomes * An action or operation resulting in a well defined outcome is called an Experiment. * The Process of Conducting the experiment is called trail, whereas the outcomes is called an event. * If an experiment can result in two or more outcomes, it is called a Random Experiment. * The set of all possible actiones of an experiment is called Sample Space and denoted by 's' * An event for an experiment is the Collection of some favourable outcomes of the experiment.

* The probability of an event lies between 'o' and '1'. The sum of all probability in an experiment is '1' Probability of an event is never Negative. P(E) + P(NOT E) = 1 (ie) $P(E) + P(\overline{E}) = 1$ (or) $P(A) + P(\overline{A}) = 1$ Probability of a sure event is always 1 * Probability of an impossible event is always o $0 \leq P(E) \leq 1$ * If a die is thrown in times there the total no. of outcomes are 6" * If a coin is thrown in times then the total no. of outcomes are 2" * If 2 events have the same probability these events are said to be Equally likely events.

* The possible outcomes : S-> Sample Space. > When a die is rolled: 3= { 1, 2, 3, 4, 5, 6 } (ie) n(s) = 6 $(ie) n(s) = 6^{n}$ ⇒6'=6 > When 2 dice are rolled: $S = \frac{3}{1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \begin{pmatrix}$ (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (H1) (H12) (H3) (H,H) (H15) (H6) (5_{11}) (5_{12}) (5_{13}) (5_{14}) (5_{15}) (5_{16}) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) } ... n(s) = 3b(ie) n(s) = 62 = 36 => klhen a coin is tossed. $S = \{H, T\}$ (ie)n(s)=2" (n(s)) = 23 2 = 2 > When 2 coins are tossed $S = \{(H,H) (H,T) (T,H) (T,T)\}$: n(s) = H (ie) $n(s) = 2^{2} = H$

Date: > When 3 coins are tossed, $S = \tilde{I}(H, H, H)$, (T, T, T), (H, H, T), (T, H, H), (T, T, H), (H, T,T) (H, T, H) (T, H, T) - (H, T, T) - (H, T, T) - (H, T, H) (T, H, T) - (H, T) - (H, T, H) - (H, T) - (H(n(s) = 8= 23 = 8 => Cards @ Probability: Cards (52) Clubs (05) Clover (13) spade DIAMONS HEART (13) (13) (13) The thirteen cards are named as, A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J Q and K Face cards or Picture cards: A kings + A Queens + & Jack = 12 Honour Cards: H Kings + H Queens + & Jack + H Ace = 16

Mathematics

(Chapter – 15) (Statistics) (Class – IX)

EXERCISE 15.1

Q.1. In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

Sol. Total number of balls played by the batswoman = 30, Boundaries hit = 6 No. of balls in which she did not hit any boundary = 30 - 6 = 24

 $\therefore P (\text{she did not hit a boundary}) = \frac{\text{No. of balls in which she did not hit any boundary}}{\text{Total number of balls played}} = \frac{24}{30} = \frac{4}{5}$

Q.2. 1500 families with 2 children were selected randomly, and the following data were recorded. :

Number of girls in a family	2	1	0
Number of families	475	814	211

Compute the probability of a family, chosen at random, having (i) 2 girls (ii) 1 girl (iii) No girl Also check whether the sum of these probabilities is 1.

Sol. (i) P (a family having 2 girls) = $\frac{\text{No. of families having 2 girls}}{\text{Total no. of families}} = \frac{475}{1500} = \frac{19}{60}$

(ii) P (a family having 1 girl) = $\frac{\text{No. of families having 1 girl}}{\text{Total no. of families}} = \frac{814}{1500} = \frac{407}{750}$

(iii) P (a family having no girl) = $\frac{\text{No. of families having no girl}}{\text{Total no. of families}} = \frac{211}{1500}$

Sum of the probabilities in all three cases $=\frac{19}{60} + \frac{407}{750} + \frac{211}{1500} = \frac{475 + 814 + 211}{1500} = \frac{1500}{1500} = 1$

Q.3. In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained. Find the probability that a student of the class was born in August.

Sol. Total number of students considered = 40No. of students born in August = 6

:. P (a student was born in August) = $\frac{\text{No. of students born in August}}{\text{Total no. of students considered}} = \frac{6}{40} = \frac{3}{20}$

Q.4. Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes :

Outcome	3 heads	2 heads	1 head	No head
Frequency	23	72	77	28

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.

- **Sol.** Total number of tosses = 200No. of times 2 heads occur = 72 $\therefore P (2 \text{ heads coming up}) = \frac{\text{No. of times 2 heads occur}}{\text{Total no. of tosses}} = \frac{72}{200} = \frac{9}{25}$
- Q.5. An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below :

Monthly income	Vehicles per family			
in (Rs)	0	1	2	Above 2
Less than 7000	10	160	25	0
7000 - 10000	0	305	27	2
10000 - 13000	1	535	29	1
13000 - 16000	2	469	59	25
16000 or more	1	579	82	88

Suppose a family is chosen. Find the probability that the family chosen is

(i) earning Rs 10000 – 13000 per month and owning exactly 2 vehicles.

(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.

(iii) earning less than Rs 7000 per month and does not own any vehicle.

(iv) earning Rs 13000 – 16000 per month and owning more than 2 vehicles.

(v) owning not more than 1 vehicle.

Sol. Total no. of families considered = 2400

(i) P(a family earning Rs 10000 - 13000 per month and owning exactly 2 vehicles) $\frac{\text{No. of families earning Rs 10000 - 13000 per month and owning 2 vehicles}}{\text{Total no. of families}} = \frac{29}{2400}$ Total no. of families

(ii) P (a family earning Rs 16000 or more per month and owning exactly 1 vehicle)

	No. of families earning Rs 16000 or more per month and owning 1 vehicle		579	193
=	Total no. of families	=	2400	800

(iii) P(a family earning less than Rs 7000 per month and does not own any vehicle)

Total no. of families

$$=\frac{10}{2400}=\frac{1}{240}$$

(iv) P(a family earning Rs 13000 – 16000 per month and owing more than 2 vehicles) No. of families earning Rs 13000 - 16000 per month and owning more than 2 vehicles =

 $=\frac{25}{2400}=\frac{1}{96}$

(v) P (a family owning 0 vehicle or 1 vehicle)

= P (a family not owning more than 1 vehicle)

 $=\frac{10+0+1+2+1+160+305+535+469+579}{2400}=\frac{2062}{2400}=\frac{1031}{1200}$

Q.6. Following table shows the performance of two sections of students in Mathematics test of 100 marks.

Marks	Number of students
0 - 20	7
20 - 30	10
30 - 40	10
40 - 50	20
50 - 60	20
60 - 70	15
70 - above	8
Total	90

(i) Find the probability that a student obtained less than 20% in the mathematics test.

(*ii*) Find the probability that a student obtained marks 60 or above.

Sol. (i) Total no. of students = 90

P (a student obtained less than 20%) = $\frac{\text{No. of students who obtained less than 20\%}}{\text{Total no. of students}}$

$$=\frac{7}{90}$$

(ii) P (a student obtained 60 marks or above)

 $= \frac{\text{No. of students who obtained 60 marks or more}}{\text{Total number of students}} = \frac{15+8}{90} = \frac{23}{90}$

Q.7. To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.

Opinion	Number of students		
like	135		
dislike	65		

Find the probability that a student chosen at random(i) likes statistics,(ii) does not like it.

Sol. (i) P (a student likes statistics) = $\frac{\text{No. of students who like statistics}}{\text{Total no. of students}} = \frac{135}{200} = \frac{27}{40}$

Find the probability that any of these bags chosen at random contains moer than 5 kg of flour.

Sol. Total no. of bags examined = 11

P (a bag weighing more than 5 kg) = $\frac{\text{No. of bags which weigh more than 5 kg}}{\text{Total no. of bags}} = \frac{7}{11}$

Q.12. A study was conducted to find out the concentration of sulphur dioxide in the air parts per million (ppm) of a certain city. The data obtained for 30 days is as follows :

0.03	0.08	0.08	0.09	0.04	0.17
0.16	0.05	0.02	0.06	0.18	0.20
0.11	0.08	0.12	0.13	0.22	0.07
0.08	0.01	0.10	0.06	0.09	0.18
0.11	0.07	0.05	0.07	0.01	0.04

Using this table, find the probability of the concentration of sulphur dioxide in the interval 0.12 - 0.16 on any of these days.

Sol. Total no. of days = 30

P(concentration of sulphur dioxide in the interval 0.12 - 0.16 in a day)

$$= \frac{\text{No. of days on which the concentration was in the interval } 0.12 - 0.16}{\text{Total no. of days}} = \frac{2}{30} = \frac{1}{15}$$

Q.13. The blood groups of 30 students of Class VIII are recorded as follows :

A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O, A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O Use this table to determine the probability that a student of this class, selected at random, has blood group AB.

Sol. Total no. of students = 30

P (a student has blood group AB) = $\frac{\text{No. of students which have the blood group AB}}{\text{Total no. of students}}$

$$=\frac{3}{30}=\frac{1}{10}$$